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We analyze the functioning of Gibbs-type entropy functionals in the time domain, with
emphasis on Shannon and Kullback-Leibler entropies of time-dependent continuous
probability distributions. The Shannon entropy validity is extended to probability dis-
tributions inferred from L2(R") quantum wave packets. In contrast to the von Neumann
entropy which simply vanishes on pure states, the differential entropy quantifies the de-
gree of probability (de)localization and its time development. The associated dynamics
of the Fisher information functional quantifies nontrivial power transfer processes in
the mean, both in dissipative and quantum mechanical cases.
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1. INTRODUCTION

In a number of manifestations of the concept of entropy in physics and mathe-
matics, information-theory based entropy methods were devised to investigate the
large time behavior of solutions for various, mostly dissipative, partial differential
equations. One obvious physical motivation, e.g. the Boltzmann H-theorem for
a dilute gas, stands merely for a particular illustration of the general trend (con-
vergence) towards equilibrium issue for solutions of a concrete (here, Boltzmann)
equation.

There are many notions of entropy, like: Clausius thermodynamic, Boltz-
mann, Gibbs, Shannon, Kullback-Leibler, Renyi, Tsallis, von Neumann, Wehrl,
Leipnik, information entropy, differential entropy, topological, measure-theoretic,
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Kolmogorov-Sinai entropies (we do not discriminate between classical and
quantum regimes)). The possibility of having different entropies is not harm-
ful, as long as one unambiguously sets them in correspondence with different
physical situations and remembers that a concrete entropy choice is context
and purpose-dependent, see Refs. (44, 61) for a deeper discussion of related
intricacies.

To avoid any possible confusion, let us explain that in the present paper,
we shall not directly invoke nor use the concept of a standard thermodynamical
entropy for classical or quantum many-body systems, in equilibrium or out of
equilibrium. We are interested in the general information-theory background for
the entropy notion and use the word “entropy” in a wider, not necessarily thermo-
dynamic sense. In particular, the standard thermodynamical entropy is regarded
as a function on phase-space, while the differential entropy is a function of a
probability distribution on whatever space.

We often refer to an explicit information-theoretic lore. Shannon, Kullback
and von Neumann entropies are typical information theory tools which were de-
signed to quantify the “information content”. For quantum systems with vanishing
von Neumann entropy (in pure states) one presumes a “complete information”
about the state. For pure state, the differential entropy gives access to another
“information level”, associated with a probability distribution inferred from a
L%(R™) wave packet. It is perfectly suited to give account of the Schrodinger pic-
ture dynamics of quantum wave packets. In view of its role in the formulation of
entropic indeterminacy relations, the term “information” is used in the paper in
the technical sense, meaning the inverse of “uncertainty” and should not be taken
literally.

In physical sciences, entropy is typically regarded as a measure of the degree
of randomness and the tendency (trends) of physical systems to become less and
less “organized”. For “less organized” systems the notion of entropy becomes
synonymous with the measure of uncertainty. We attribute a specific meaning to
the term “organization”. Namely, we are interested in quantifying the degree of
the probability distribution “complexity” and “(de)localization” on the state space
(needs to be specified) of the system.

The paper is structured as follows. We begin by recalling the standard lore
of the Shannon information theory to attribute an unambiguous meaning to two
principal notions, this of information and that of uncertainty. To this end various
notions of “state” of a model system are invoked and suitable information measures
are discussed.

Next we turn to the coarse-graining issue and set a connection between the
Shannon entropy of a discrete probability measure and the differential entropy of
a related (through a suitable limiting procedure) continuous probability density.
We discuss various entropic inequalities for both differential and coarse-grained
entropies of quantum mechanical densities.
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In Section 3, the localization level of probability densities is analyzed by
means of so-called entropy powers and of the Fisher information measure. We
infer two chain inequalities, Eqs. (28) and (29), which imply that typically the
differential entropy is a well behaved quantity, bounded both from below and
above. The formalism is general enough to include quantum mechanical densities
as merely the special case.

In Section 4 we set a conceptual framework for time-dependent problems.
Since classical dynamical, stochastic and quantum systems (in their pure states)
in general give rise to time-dependent probability densities and information en-
tropies, we resolve the exemplary density dynamics in terms of Smoluchowski
diffusion processes, albeit with no explicit random path (e.g. random variable)
input.

The entropy and Fisher information evolution equations are established. Close
links of the differential and conditional Kullback entropies are established for
Smoluchowski diffusion processes, when asymptotic invariant densities enter the
scene. We discuss a compliance of the induced continual power release in the
course of the diffusion process with the mean energy conservation law, Eqgs. (77)
and (81).

In section 5 we analyze differential entropy dynamics and time evolution of
the Fisher localization measure in quantum theory and next exemplify the general
formalism for simple analytically solvable cases. The emergent continual power
transfer effect has been analyzed in connection with the finite energy constraint
for the mean energy of quantum motion, Eqgs. (87) and (90).

Although uncertainty dynamics scenarios of Sections 4 and 5 are fundamen-
tally different, nonetheless the respective methodologies appear to have an overlap,
when restricted to steady states which support invariant densities for (reversible)
stationary diffusion-type processes.

2. ENTROPY: INFORMATION AND UNCERTAINTY

Notions of entropy, information and uncertainty are intertwined and cannot
be sharply differentiated. While entropy and uncertainty are—to some extent
synonymous—“measures of ignorance” (lack of information, uncertainty), the
complementary notion of information basically quantifies the ability of observers
to make reliable predictions about the system®®38:103): the more aware one is
about chances of a concrete outcome, the lower is the uncertainty of this outcome.
Normally, the growth of uncertainty is identified with an increase of entropy which
in turn is interpreted as an information loss.

Following Ref. (99) let us recall that entropy—be it thermodynamical, von
Neumann, Shannon, or any other conceivable candidate—has an exceptional sta-
tus among physical quantities. As a derived quantity it does not show up in any
fundamental equation of motion, and is surely not a constraint upon the quantum
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(Schrodinger) dynamics per se. As an obvious remnant of the standard thermo-
dynamical reasoning, one expects entropy to be a “state function” of the system
(thermodynamical notions of equilibrium or near-equilibrium are implicit).

This state connotation is a source of ambiguities, since inequivalent notions
of “state” are used in the description of physical systems, be them classical,
thermodynamical and quantum.®) Not to mention rather specialized meaning of
“states” employed in the standard information theory.(!”-86:103)

A primitive information-theory system is simply a bit whose two admissible
states are binary digits 1 and 0. Its quantum equivalent is a gubit whose admissible
states are vectors in a two-dimensional Hilbert space, hence an infinity of pure
states of a two-level quantum system.

But, the information theory framework, when extended to more complicated
systems, employs a plethora of notions of “state”.(3%:193) As very special cases we
may mention a phase-space point as the determinative of the state of a classical
dynamical system, or the macroscopic notion of a thermodynamical state in its
classical and quantum versions.©!-%%)

The notion of entropy when adopted to quantum systems appears to be
purpose-dependent.>77:99 A symbolic mathematical representation of quantum
states in terms of wave vectors and/or density operators is expected to provide an
experimentally verifiable “information” about the system. To obtain a catalogue of
the corresponding statistical predictions, an a priori choice of suitable observables
(and thus measurement procedures) is necessary. Then, a casual interpretation of
entropy as a measure of one’s uncertainty about measurable properties of a system
in a prescribed quantum state may acquire an unambiguous meaning.

For a given density operator p, von Neumann entropy

S(p) = —kp Tr(p1np) (M

is commonly accepted as a reliable measure of the departure from purity and
often regarded as defining a notion of information content, to be experimentally
extracted from of a quantum system in a given state. Since von Neumann entropy
is insensitive to unitary transformations, the result exhibits an invariance under
the change of the Hilbert space basis and the conservation in time for a closed
system (when there is no information/energy exchange with the environment).
Thus, Schrodinger dynamics has no impact on the von Neumann encoding of
information, see e.g. also Refs. (55, 90) for a related discussion.

Pure states have vanishing von Neumann entropy (S(0) = 0 “for the pure
states and only for them”®?) and are normally considered as irrelevant from the
quantum information theory perspective, since “one has complete information”®?)
about such states. One may even say that a pure state is an unjustified over-
idealization, since otherwise it would constitute e.g. a completely measured state
of a system in an infinite Hilbert space.(®)
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Note that as a side comment we find in Ref. (78) a minor excuse: “this
idealization, often employed for position-momentum degrees of freedom, is usu-
ally an adequate approximation”. This can be read as an answer to an objection
of Ref. (33): “although continuous observables such as the position are familiar
enough, they are really unphysical idealizations”, c.f. also Ref. (40).

On the other hand, the position-momentum issue can be addressed in terms of
the classic Shannon entropy which is known to be a natural measure of the amount
of uncertainty related to measurements for pairs of observables, discrete and con-
tinuous on an equal footing, when a quantum system actually is in a pure state.
The related entropic versions of Heisenberg-type indeterminacy (uncertainty) re-
lations for finite and infinite quantum systems have received due attention in the
literature. (= G1L.7®)

Obviously, there is no use of Shannon entropy if one is interested in verifying
for mixed quantum states, how much actually a given state is mixed. On the other
hand, von Neumann entropy appears to be useless in the analysis of L?(R) wave
packets and their dynamical manifestations (time-dependent analysis) which are
currently in the reach of experimental techniques.'%%-1% If the state vector is re-
garded as an information (alternatively, predictions and uncertainty) resource, then
questions like®¥: “how much information in the state vector” and “information
about what”, may be considered meaningful.

Given the probability density p(x) on R”, we define the differential
entropy,?”-%%) as follows:

(o) = — / p(x)In p(x)dx @

One may consider a subset I' C R” to be a support of p instead of R; this
is guaranteed by the convention that the integrand in Eq. (2) vanishes if p does.
Note a minor but crucial notational difference between p and p.

We emphasize that in the quantum mechanical context, we shall invoke either
position S(p) or momentum S(p) information entropies, with no recourse to the
“classical entropy” given in terms of classical phase-space distributions f(g, p)
or their Wigner/Husimi analogues.*#7-%%

The notion of entropic uncertainty relations,!:12:63.77) explicitly relies on the
differential entropy input. Namely, an arithmetic sum of (presumed to be finite)
momentum and position information entropies for any normalized L?(R") wave
packet 1(x), is bounded from below:

S(p)+S8(p) = n(1 +1Inm) 3)

where n stands for the configuration space (respectively momentum space)
dimension."” This feature is worth emphasizing, since neither S(p) nor S(p)
on their own are bounded from below or from above. Nonetheless, both take finite
values in physically relevant situations and their sum is always positive.
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Since a normalized wave function i represents a pure state of a quantum sys-
tem whose dynamics is governed by the Schrédinger equation, only for stationary
states the differential entropy S(p) is for sure a conserved quantity. In general, the
Schrédinger picture evolution of v (x, #) and so this of [y¥(x, £)|? = p(x, t) may
give rise to a nontrivial dynamics of the information entropy associated with the
wave packet ¥ (x, t).

Let us point out that most of the “entropic” research pertains to time-
independent situations, like in case of stationary solutions of the Schrodinger equa-
tion. Notable exceptions are Refs. (67, 68, 84). On general non-quantum grounds
an information (differential entropy) dynamics is addressed in Refs. (66, 88) and
(30)—(50), see also Refs. (44, 57, 74, 80, 81, 83).

The differential entropy, by a number of reasons,®6-8%) cannot quantify the
“absolute amount of information carried by the state of the system” (Shannon’s
uncertainty), unless carefully interpreted. Up to measure preserving coordinate
transformations the latter objection remains invalid.

This feature gave impetus to numerically assisted comparative studies of the
Shannon information content of different pure states of a given quantum system
and to the study of quantum system “complexity”. Results are ranging from simple
atoms to molecules, nuclei, aggregates of particles, many-body Bose and Fermi
systems, and Bose-Einstein condensates, see e.g. Refs. (7)—(38). In these cases,
Shannon’s differential entropy appears to be a fully adequate measure for the
complexity and localization degree of the involved stationary wave packets.

A difference of two information entropies (evaluated with respect to the
same coordinate system) S(p) — S(p’) undoubtedly quantifies an absolute change
in the information content when passing from one state of a given system to
another. Alternatively, to this end one may invoke the familiar notion of the relative
Kullback entropy — fr p(Inp —1np’)dx,®8 provided p’ is strictly positive.
Cogent recommendations towards the use of the Shannon information measure,
plainly against the Kullback option, can be found in Ref. (93). We shall come to
this point later. For arguments just to the opposite see e.g. Ref. (87).

In the present paper, we predominantly use the differential entropy. In Sec-
tion 4 we shall describe a number of limitations upon the use of the Kullback
entropy. When both entropies can be safely used (we discuss selected models of
diffusion type dynamics with asymptotic invariant densities), we establish direct
links between the Shannon and Kullback entropy dynamics.

In the context of the induced (by time development of probability densities)
“information dynamics” S — S(z), ®-%2) it is the difference S(¢) — S(¢') between
the (presumed to be finite) information entropy values for the time-dependent state
of the same physical system, considered at times ¢’ < ¢, which properly captures
the net uncertainty/information change in the respective time interval [#, ¢]. In
particular, the rate in time of information entropy % is a well defined quantity
characterizing the temporal changes (none, gain or loss) in the information content
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of a given L2(R") normalized wave packet v (x, ¢) (strictly speaking, of the related
probability density).

Information entropy and its intrinsic dynamics, like e.g. the information flow
and information entropy production rate, quantify properties of general reversible
and/or irreversible dynamical systems. Normally, the microscopic dynamics of
such systems is expected to follow well defined trajectories (deterministic paths
of a dynamical system or sample paths of a stochastic process) and those may be
thought to induce a corresponding dynamics for statistical ensembles of trajecto-
ries.

It is seldom possible to have a sharp wisdom of the initial data x, € X for the
trajectory dynamics taking place in a phase space X of the system. This imprecision
extends to the terminal data (xo — x; after time ¢ > 0) as well. Therefore, even if
one knows exact dynamical rules governing the behavior of individual trajectories
in time, it is basically impossible to tell more about the system then: if its initial
state can be found in a subset 4 C X with a probability prob(xy € A), then after
time ¢ one can identify the terminal state of the system x, € X in a subset B C X
with a probability prob(x; € B). An evolution of derived probability densities
eventually may come as a solution of appropriate partial differential transport
equations. (16,30.60.66)

In the present paper we take a more general view and we bypass a concept of
the underlying trajectory dynamics by emphasizing the role of transport equations
themselves and their density solutions. Under such premises, we can safely address
the dynamics of uncertainty/information generated by the Schrdédinger picture
quantum evolution of wave packets in closed (no system — reservoir/environment
coupling) quantum mechanical systems.

3. DIFFERENTIAL ENTROPY
3.1. Prerequisites

The original definition of Shannon entropy conveys a dual meaning of both
uncertainty and information measure. It is useful to interpret those features in a
complementary (albeit colloquial) way: the less is the uncertainty of the system or
its state, the larger (and more valuable) is the information we acquire as a result
of the measurement (observation) upon the system, and in reverse.

We know that a result of an observation of any random phenomenon cannot
be predicted a priori (i.e. before an observation), hence it is natural to quantify an
uncertainty of this phenomenon. Let us consider u = (i1, ..., 1y) as a probabil-
ity measure on N distinct (discrete) events 4;, 1 < j < N pertaining to a model
system. Assume that Zj.vzl w; =1and u; = prob(A4;) stands for a probability
for an event 4 to occur in the game of chance with N possible outcomes.
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Let us call —log w; an uncertainty function of the event A4;. Interestingly,
we can coin here the name of the (“missing”) information function, if we wish
to interpret what can be learned via direct observation of the event 4;: the less
probable is that event, the more valuable (larger) is the information we would
retrieve through its registration.

Then, the expression

N
S(u)y=—>_u;log p; )
j=1

stands for the measure of the mean uncertainty of the possible outcome of the
game,®® and at the same time quantifies the mean information which is accessible
from an experiment (i.e. actually playing the game).

Thus, if we identify event values 41, ..., Ay with labels for particular dis-
crete “states” of the system, we may interpret Eq. (4) as a measure of uncertainty
of the “state” of the system, before this particular “state” it is chosen out of the set
of all admissible ones. This well conforms with the standard meaning attributed to
the Shannon entropy: it is a measure of the degree of ignorance concerning which
possibility (event 4;) may hold true in the set {41, 42, ..., Ay} with a given a
priori probability distribution {u, ..., un}.

Notice that:

0 <S(n) <log N (5)

ranges from certainty (one entry whose probability equals 1 and thus no informa-
tion is missing) to maximum uncertainty when a uniform distribution pu; = 1/N
for all 1 < j < N occurs. In the latter situation, all events (or measurement out-
comes) are equiprobable and log N sets maximum for a measure of the “missing
information”.

By looking at all intermediate levels of randomness allowed by the inequali-
ties Eq. (5) we realize that the lower is the Shannon entropy the less information
about “states” of the system we are missing, i.c. we have more information about
the system.

If the Shannon entropy increases, we actually loose an information available
about the system. Consequently, the difference between two uncertainty measures
can be interpreted as an information gain or loss.

3.2. Events, States, Microstates and Macrostates

The Boltzmann formula

S=kylnW = —kzln P (©6)
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sets a link of entropy of the (thermodynamical) system with the probability
P = 1/ W that an appropriate “statistical microstate” can occur. Here, W stands
for a number of all possible (equiprobable) microstates that imply the prescribed
macroscopic (e.g. thermodynamical) behavior corresponding to a fixed value
of S.

It is instructive to recall that if P is a probability of an event i.e. of a particular
microstate, then — In P (actually, with log, instead of In) may be interpreted“®
as “a measure of information produced when one message is chosen from the set,
all choices being equally likely” (“message” to be identified with a “microstate”).
Another interpretation of —In P is that of a degree of uncertainty in the trial
experiment.(10%)

To get a better insight into the information-uncertainty intertwine, let us
consider an ensemble of finite systems which are allowed to appear in any of N > 0
distinct elementary states. The meaning of “state” is left unspecified, although an
“alphabet” letter may be invoked for convenience.

Let us pick up randomly a large sample composed of G > 1 single sys-
tems, each one in a certain (randomly assigned) state. We record frequen-
ciesn|/G = py,...,ny/G = py with which the elementary states of the type
I,..., N do actually occur. This sample is a substitute for a “message” or a
“statistical microstate” in the previous discussion.

Next, we identify the number of all possible samples of that fixed size G
which would show up the very same statistics py, ..., py of elementary states.
We interpret those samples to display the same “macroscopic behavior”.

It was the major discovery due to Boltzmann that the number W of relevant
“microscopic states” can be approximately read out from each single sample and
is directly related to the the introduced a priori probability measure w1, ..., iy,
with an identification p; = u; forall 1 <i < N, by the formula:

N
InW~-G> pilnp =-G-Su) (7)
i=1

On the basis of this formula, we can consistently introduce S(u) as the mean
information per each (i-th) elementary state of the N-state system, as encoded in
a given sample whose size G > 1 is sufficiently large.(17:3¢)

3.3. Shannon Entropy Versus Differential Entropy
3.3.1. Coarse-Graining

For a given probability density function on R we can adopt the coarse-graining
procedure,®® giving account of an imprecision with which a spatial position x
can be measured or estimated. Thus, we shall pass from density functions to
approximating them piece-wise constant, histogram-type discontinuous functions.
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We need to partition the configuration space R into a family of disjoint
subsets (intervals) {B;} such that UyBy € R and B; N B; =0 for i # j. We
denote p(By) = 1 the length of the k-th interval, where p stands for the Lebesgue
measure on R.

A probability that a Gaussian random variable with the density p takes its
value x in an interval By equals prob(By) = py = [ B p(x)dx. An average of the
density p over By we denote < p >;= py/u; where uy = ka dx.

The probability density p coarse grained with respect to the partition {B;}
reads:

pa(x) =Y < p =i 1i(x) ®)
k

where 1;(x) is an indicator (characteristic) function of the set By, which is
equal 1 for x € B; and vanishes otherwise. Since f 1;(x)dx = py it is clear that
[ pe(x)dx =3, < p >k ux = Y, px = 1 where an interchange of the summa-
tion with integration is presumed to be allowed.

We choose a grating unit u; =r < 1 for all £ and notice that < p >;=
pr/r where py >~ p(xy) - r for certain x; € By. In view of the spatial localization
properties of the Gauss function, we can safely assert that a finite interval L
about a mean value xo may be used in the coarse graining procedure, instead
of the full configuration space R. Effectively, we arrive at a finite partition on
L with the resolution L/G = r and then we can safely invoke the definition of
Pk = P =1 p(xp).

For a coarse grained probability density we introduce a coarse grained Shan-
non entropy whose relationship to the original differential entropy is of major
interest. We have:

Sps) ==Y pelnpe = =Y [rp@olinr — Y (oG] nfp()]  (9)
k k k

with a standard interpretation of the mean information per bin of length ». Here,
if a partition (grating) unit » is small, one arrives at an approximate formula (we
admit | Inr| > 1):

S(pp) ~ —Inr — / p(xX)In[p(x)]dx = —Inr + S(p) (10)

with the obvious proviso that S(pg) > 0 and S(p) > Inr.

In view of Eq. (10), as long as we keep in memory the strictly positive
grating unit », there is a well defined “regularization” procedure (add — Inr to
S(p)) which relates the coarse grained entropy with a given differential entropy.
In a number of cases it is computationally simpler to evaluate the differential en-
tropy, and then to extract—otherwise computationally intractable—coarse grained
entropy.
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Notice that one cannot allow a naive zero grating limit in Eq. (10), although »
may be arbitrarily small. The smaller is the positive , the better is an approximation
of the differential entropy by the second term on the right-hand-side of Eq. (10).

We have inequalities 0 < S(pg) < G where L = G - r. They extend to all
approximately equal entries in Eq. (10). Since —In» = —In L + In G, we arrive
at new inequalities:

Inr < — Z[rp(xk)] In[p(x;)] <InL (11)
k

where Y, [rp(xp)] In[p(xx)] = — [ pIn p dx with » — 0 and possibly L — oc.
A conclusion is that the differential entropy is unbounded both form below and
from the above. In particular, S(p) may take arbitrarily low negative values, in
plain contrast to its coarse grained version S(pp) which is always nonnegative.
Let us recall that the value of a convex function x In x at the mean value of its
argument (x), does not exceed the mean value (x In x) of the function itself. Then,
in our notation which follows Eq. (12), we can directly employ an averaging over

By:
1 1 1
—/ olnpdx > (—/ ,odx) [ln <—/ ,odx)i| . (12)
r By r By r By

Taking the minus sign, executing summations with respect to k& (convergence
of the series being presumed) and using Egs. (15) and (16) we get:

S(p) —Inr < S(ps) (13)

as a complement to Eq. (17), see e.g. also Refs. (11, 84). The difference of two
coarse grained entropies, corresponding to the same partition but to different
(coarse grained) densities, may be adequately approximated by the difference of
the corresponding differential entropies:

S(pp) — S(pp) = S(p) — S(p"), (14)

provided they take finite values®*+89):

3.3.2. Spatial Coarse Graining in Quantum Mechanics

The coarse grained entropy attributes the “mean information per bin of length
r” to systems described by continuous probability densities and their differential
entropies. Effectively one has a tool which allows to accompany the coarse grained
density histogram (of py. in the k-th bin on R) by the related histogram of uncertain-
ties —In py, c.f. Section II.A where an uncertainty function has been introduced.

The archetypal example of position measurement in quantum mechanics
presumes that position is measured in bins corresponding to the resolution of the
measurement apparatus. This means that the continuous spectrum of the position
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observable is partitioned into a countable set of intervals (bins) whose maximum
length we regard as a “resolution unit”. For an interval By C R we may denote py
the probability of finding the outcome of a position measurement to have a value
in B;. We are free to set the bin size arbitrarily, especially if computer assisted
procedures are employed.(’?

The formula Eq. (10) gives meaning to the intertwine of the differential and
coarse grained entropies in the quantum mechanical context. When an analytic
form of the entropy is in the reach, the coarse graining is straightforward. One
should realize that most of the results known to date have been obtained numer-
ically, hence with an implicit coarse-graining, although they were interpreted in
terms of the differential entropy, see e.g. Refs. (47)—(72).

In connection with the entropic inequality Eq. (3) let us point out (77) that it
is a generic property of normalized L(R") wave functions that, by means of the
Fourier transformation, they give rise to two interrelated densities (presently we
refer to L2(R)): p = |¥|? and p = |F(y)|* where

1
(F)(k) = ﬁ/W(X)CXp(—ikX)dk 15)

is the Fourier transform of ¥ (x). The inequality (3) for the corresponding (finite)
differential entropies follows, here with n = 1.

By choosing arbitrarily small resolutions » << 1 and 7# < 1 we can introduce
the respective coarse grained entropies, each fulfilling an inequality Eq. (13). Com-
bining these inequalities with Eq. (3), we get the prototype entropic inequalities
for coarse grained entropies:

S(ps)+S(P) = 1+ Inmw — In(r - 7) (16)

with the corresponding resolutions » and 7.
By referring to Eq. (10) we realize that the knowledge of S(pz), completely
determines S(pp) at the presumed resolution levels:

S(s) ~1+Inmw — In(r - 7) — S(pz) = 0 (17)

and in reverse. This in turn implies that in all computer generated position-
momentum differential entropy inequalities, where the coarse graining is implicit,
the knowledge of position entropy and of the resolution levels provide sufficient
data to deduce the combined position-momentum outcomes, see also Refs. (90)—
(72).

In standard units (with 7 reintroduced, see e.g. Ref. (54) for an explanation
how to handle dimensional units in the entropy definition), the previous discus-
sion pertains to quantum mechanical position-momentum entropic uncertainty
relations. In the notation of Refs. (11, 14) we have:

5x -5
Sx+szl—ln2—1n<xh p) (18)
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for measurement entropies with position and momentum “measuring device”
resolutions §x and §p respectively, such that §x - §p < A.

Let us point out that one should not confuse the above resolution units 7, 7 and
dx, 8p with mean square deviation values which are present in the standard for-
mulation of uncertainty relations. If, following conventions we define the squared
standard deviation (i.e. variance) value for an observable 4 in a pure state y
as (AA)? = (Y, [4 — (A)?) with (4) = (¥, AY), then for the position X and
momentum P operators we have the following version of the entropic uncertainty
relation (here expressed through so-called entropy powers, see e.g. Ref. (77)):

AX-AP > 1 oxp[S(p) + S(5)] = (19)
2me 2

which is an alternative for Eq. (3): » = 1 and % = 1 being implicit.

4. LOCALIZATION: DIFFERENTIAL ENTROPY
AND FISHER INFORMATION

Among all one-dimensional distribution functions p(x) with a finite mean,
subject to the constraint that the standard deviation is fixed at o, it is the Gauss
function with half-width o which sets a maximum of the differential entropy.(®®)
For the record, let us add that if only the mean is given for probability density
functions on R, then there is no maximum entropy distribution in their set.

Let us consider the Gaussian probability density on the real line R as a refer-
ence density function: p(x) = (1/0+/27) exp[—(x — x¢)?/202]. The differential
entropy of the Gauss density has a simple analytic form, independent of the mean
value x( and maximizes an inequality S(p) < % In (27rec?). This imposes a useful
bound upon the entropy power ﬁ exp[S(p)] < o with an obvious bearing on
the spatial localization of the density p, hence spatial (un)certainty of position
measurements.

For arbitrary density functions the differential entropy Eq. (2) is unbounded
form below and from above. Nonetheless we realize that in the subset of all densi-
ties with a finite mean and a fixed variance o', we actually have an upper bound.
However, in contrast to coarse grained entropies which are always nonnegative,
even for relatively large mean deviation o < 1/+4/2mwe =~ 0.26 the differential en-
tropy S(p) is negative.

Therefore, quite apart from the previously discussed direct information theory
links, c.f. Egs. (10), (13) and (14), the major role of the differential entropy is to
be a measure of localization in the “state space” (actually, configuration space) of
the system.*6:7%:99)

Let us consider a one-parameter family of probability densities p,(x) on R
where the mean value of p, equals o and we fix at 0% the value ((x — «)?) =
(x?) — a? of the variance (here, standard deviation) of the probability density o, .
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The following inequality holds true:

00q 1
fi s

An integral on the left-hand-side is the so-called Fisher information of p,, known to
appear in various problems of statistical estimation theory, as well as an ingredient
of a number of information-theoretic inequalities.?®32:43-46.89) In view of F, >
1/02, we realize that the Fisher information is more sensitive indicator of the wave
packet localization than the entropy power.

Let us define p,(x) = p(x — ). Then, the Fisher information F, = F is
no longer the mean value «-dependent and can be readily transformed to the
conspicuously quantum mechanical form (up to a factor D? with D = % /2m):

1 1 ap u?
5]—"=§/ (ax) dx=/p-7dx=—<Q> @)

where u = V In p is named an osmotic velocity field*!:7> and an average (Q) =
[ p - Qdx is carried out with respect to the function

Ap'/?
0 =275 22)

As a consequence of Eq. (20), we have —(Q) > 1/20? for all relevant probability
densities with any finite mean and variance fixed at 2.

When multiplied by D?, the above expression for Q(x) notoriously appears in
the hydrodynamical formalism of quantum mechanics as the so-called de Broglie-
Bohm quantum potential (D = % /2m). It appears as well in the corresponding
formalism for diffusion-type processes, including the standard Brownian motion
(then, D = kT /mp, see e.g. Refs. (39, 41, 43).

An important inequality, valid under an assumption p,(x) = p(x — «), has
been proved in Ref. (89), see also Refs. (20, 32):

% < (o) exp[—28(p)] < F 23)

It tells us that the lower bound for the Fisher information is in fact given a sharper
form by means of the (squared) inverse entropy power. Our two information
measures appear to be correlated.

Let us point out that the Fisher information F(p) may blow up to infinity
under a number of circumstances>: when p approaches the Dirac delta behavior,
if p vanishes over some interval in R or is discontinuous. We observe that 7 > 0
because it may vanish only when p is constant everywhere on R, hence when p is
not a probability density.
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The values of F(p,) and S(p,) are a-independent if we consider p,(x) =
p(x — a). This reflects the translational invariance of the Fisher and Shannon
information measures.”

Let us investigate an effect of the scaling transformation.?>3¢-87) We denote

Pap =B P[B(x —a)] (24)
where o > 0, 8 > 0. The respective Shannon entropy reads:
S(pap) = S(p) —Inp (25)
which transforms the entropy power inequality to the form
(2re)™""? exp[S(pap)] < 0/B. (26)

An obvious interpretation is that the S-scaling transformation of p(x — o) would
broaden this density if 8 < 1 and would shrink when 8 > 1.

Under an additional decomposition/factorization ansatz (of the quantum me-
chanical L?(R") provenance) that p(x) = |1|*(x), where a real or complex func-
tion ¢ = ,/pexp(i¢) is a normalized element of L?(R), another important in-
equality holds true(’7-3%:

9 2
.F=4f(:gﬁ>dx§1w¥¥, 27)
X

provided the Fisher information takes finite values. Here, & is the variance of the
“quantum mechanical momentum canonically conjugate to the position observ-
able”, up to (skipped) dimensional factors. In the above, we have exploited the
Fourier transform ¥ = (Fy) of y to arrive at 5 = ||> of Eq. (3) whose variance
the above &2 actually is.

In view of two previous inequalities (23), (27) we find out that not only the
Fisher information, but also an entropy power is bounded from below and above.
Namely, we have:

1
— <F< 1672652 (28)

o
which implies 1/202 < —(Q) < 87262 and furthermore

1 1

— <

A — 2me

The differential entropy S(p) typically may be expected to be a well behaved
quantity: with finite both lower and upper bounds.

We find rather interesting that the Heisenberg indeterminacy relationship

Eq. (19), which is normally interpreted to set a lower bound on the experimentally

accessible phase-space data (e.g. volume), according to Eq. (29) ultimately had

exp[S(p)] < 0. (29)
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appeared to give rise to lower and upper bounds upon the configurational (spatial)
information measure and thence—the uncertainty (information) measure.

5. ENTROPY DYNAMICS FOR DETERMINISTIC
AND DIFFUSIVE MOTIONS

5.1. Classical Dynamics

Let us consider a classical dynamical system in R” whose evolution is gov-
erned by equations of motion:

x = f(x) (30)
where X stands for the time derivative and f is an R"-valued function of x € R",
x = {x1,x2,...,x,}. The statistical ensemble of solutions of such dynamical

equations can be described by a time-dependent probability density p(x, ) whose
dynamics is given by the generalized Liouville (in fact, continuity) equation

dp==V-(fp) G

where V = {9/0x1, ..., 9/0x,}.

With a continuous probability density p = p(x, ¢), where x € R” and we
allow for an explicit time-dependence, we associate a probability density functional
S(p), according to Eq. (2). In general, S(p) = S(¢) depends on time.

Let us take for granted that an interchange of time derivative with an indef-
inite integral is allowed (suitable precautions are necessary with respect to the
convergence of integrals). Then, we readily get an identityG?:

S = /p(divf)dx = (V- f). (32)

Accordingly, the information entropy S(¢) grows with time only if the dynamical
system has positive mean flow divergence.

However, in general S is not positive definite. For example, dissipative dy-
namical systems are characterized by the negative (mean) flow divergence. Fairly
often, the divergence of the flow is constant. Then, an “amount of information”
carried by a corresponding statistical ensemble (e.g. its density) increases, which
is paralleled by the information entropy decay (decrease).

An example of a system with a point attractor (sink) at origin is a one-
dimensional non-Hamiltonian system x = —x. In this case divf = —1 and S =
—1. A discussion of dynamical systems with strange (multifractal) attractors,
for which the Shannon information entropy decreases indefinitely (the pertinent
steady states are no longer represented by probability density functions) can be
found in Ref. (30).
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We note that for Hamiltonian systems, the phase-space flow is divergenceless,
hence S = 0 which implies that “information is conserved” in Hamiltonian dy-
namics. Take for example a two-dimensional conservative system with X = p/m
and p = (=VV), where H = p*/2m + V(x). The classical equations of motion
yield the standard Liouville equation (which is a special case of Eq. (32)):

a p 0 0

o P =T p+(V )app (33)
for the phase-space density p(x, p). The corresponding divergence vanishes and
the phase space volume is conserved. For non-Hamiltonian systems we may gener-
ically expect the phase-space volume contraction, expansion or both at different
stages of time evolution.

In case of a general dissipative dynamical system (30), a controlled admixture
of noise can stabilize dynamics and yield asymptotic invariant densities. For
example, an additive modification of the right-hand-side of Eq. (30) by white noise
term A(t) where (4;(s)) = 0and (4;(s)A4;(s")) = /2¢8(s —s")8;j,i = 1,2,...n,
implies the Fokker-Planck-Kramers equation:

ap==V-(fp)+qhp (34)
where A = V? =Y".3%/3x?. Accordingly, the differential entropy dynamics
would take another form than this defined by Eq. (32):

S= /p(divf)dx+q/%(v,o)2 dx. (35)

Now, the dissipative term (V - f) < 0 can be counterbalanced by a strictly positive

stabilizing contribution ¢ Z f L(@p/dx;)? dx. This allows to expect that, under

suitable circumstances d15$1patlve systems with noise may yield S = 0. In case of
(V- f) = 0, the information entropy would grow monotonically.

5.2. Wiener Process

Let us consider the familiar heat kernel®:

. 1 x? 16
plx, 1) = @z D2 exp <—m) (36)

with the diffusion coefficient D. It is a fundamental solution of the heat equation
d;p = DAp which is the Fokker-Planck equation for the Wiener process.
The differential entropy of the above time-dependent density reads:

S(t) = (1/2) In(drweDt) (37)
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and its time evolution clearly displays the localization uncertainty growth. By
means of the formula Eq. (35) we can quantify the differential entropy dynamics
for all solutions of the heat equation.

Since the heat kernel determines the transition probability density for the
Wiener process (free Brownian motion in R), by setting x — x —x’ and ¢ —
t —t' > 0, we can replace the previous p(x, t) of Eq. (36) by p(x —x',t —1').
This transition density allows to deduce any given solution p(x, ¢) of the heat
equation from its past data, according to: p(x, 1) = [ p(x — x', 1 —t')p(x', , )dx’.
In particular, we can consider the process starting at #' = 0 with any initial density
Po(X).

Let p, denote a convolution of a probability density p with a Gaussian
probability density having variance v. The transition density of the Wiener pro-
cess generates such a convolution for pg, with v = o> = 2D¢. Then, de Bruijn
identity,*®8) dS(p,)/dv = (1/2)F(p,), directly yields the information entropy
time rate for S(p) = S(¢):

\V/ 2
Ezp.fzp./(p)dx>0. (38)
dt P

The Fisher information F(p) is the @ = 0 version of the general definition given
in Egs. (20) and (21). The derivation of Eq. (38) amounts to differentiating an
v-dependent integrand under the sign of an improper integral.(?3:4%)

The monotonic growth of S(#) is paralleled by linear in time growth of o ()
and the decay of F, hence quantifies the uncertainty (disorder) increase related to
the “flattening” down of p, see also Refs. (37, 45). Let us indicate that the entropy
time rate is positive, hence there is a definite “entropy accumulation” in the course
of the Wiener process.

5.3. Kullback Entropy Versus Differential Entropy

We emphasize that in the present paper we have deliberately avoided the
use of the relative Kullback-Leibler entropy.>3:¢6:8%) This entropy notion is often
invoked to tell “how far from each other” two probability densities are. In fact, for
two density functions f and g one may invoke the Csiszar-Kullback inequality:
[ fIn(f/g)dx = (/)| f — g||il, often interpreted to set an upper bound upon a
“distance measure” in the set of density functions

The Kullback entropy is particularly useful if one investigates an approach
of the system toward (or its deviation from) equilibrium, this being normally
represented by a stationary density function.®*:82) In this context, it is employed
to investigate a major issue of the dynamical origins of the increasing entropy, see
Refs. (60, 64, 66). Consult also both standard motivations and apparent problems
encountered in connection with the celebrated Boltzmann’s H-theorem.?#33-8D)
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However, a reliability of the Kullback entropy may be questioned in case of
general parameter-dependent densities. In particular, this entropy fails to quantify
properly certain features of a non-stationary dynamics of probability densities.
Specifically if we wish to make a “comparison” of once given density function to
itself, but at different stages (instants) of its time evolution.

Let us consider a one parameter family of Gaussian densities p, = p(x — «),
with the mean « € R and the standard deviation fixed at . These densities are
not differentiated by the information (differential) entropy and share its very same
value S, = 1 In(2ec?) independent of ..

If we admit o to be another free parameter, a two-parameter family of Gaus-
sian densities p, — pa.-(x) appears. Such densities, corresponding to different
values of ¢ and ¢’ do admit an “absolute comparison” in terms of the Shannon
entropy, in accordance with Eq. (14):

Sy —S,=In (0—) . (39)
o

By denoting 0 = o(t) = /2Dt and ¢’ = o (') we make the non-stationary
(heat kernel) density amenable to the “absolute comparison” formula at different
time instants ¢’ > ¢t > 0: (6//0) = /t'/t.

In the above we have “compared” differential entropies of quite akin, albeit
different, probability densities. Among many inequivalent ways to evaluate the
“divergence” between probability distributions, the relative (Kullback) entropy is
typically used to quantify such divergence from the a priori prescribed reference
density.(0:82)

We define the Kullback entropy (6, 0’) for a certain 6-labelled family of
probability densities py, so that the “distance” between any two densities in this
family can be directly evaluated. Let py stands for the prescribed (reference)

probability density. We have©>®32.3%):
N po(x
K0.0) = Kilpn) = [ o) 225 a, (40)
Per(x)
which, in view of the concavity of the function f(w) = —w In w, is positive.
Let us indicate that the negative of /C,
He = -k, (41)

named the conditional entropy,®® is predominantly used in the literature(64.60:8%)
because of its affinity (regarded as a formal generalization) to the differential
entropy. Then e.g. one investigates an approach of —/C towards its maximum
(usually achieved at the value zero) when a running density is bound to have a
unique stationary asymptotic.(**)

Let us consider a two-parameter 6 = (6, 6,) family of densities. If we take
0] =6, + AY; with A9; < 1 for i = 1,2, the following approximate formula
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holds true under a number of standard assumptions®®):

1
K(@©,6 + A§) ~ EZﬁj - AG; NG, (42)
ij
where i, j, = 1, 2 and the Fisher information matrix J;; has the form

dlnpy 01
Fy = / np@ : I;'_Oa dx. 43)
J

In case of Gaussian densities, labelled by independent parameters #; = « and
6, = o (alternatively 6, = o?), the Fisher matrix is diagonal.

It is useful to note (c.f. also Ref. (64)) that in self-explanatory notation, for
two 0 and 6’ Gaussian densities there holds:

K. 0) =" + L (2 ! 0% 44
(9,0)_n;+5<?—)+m(a—a). (44)
The first entry in Eq. (44) coincides with the “absolute comparison formula” for
Shannon entropies, Eq. (39). However for |§" — 6| <« 1, hence in the regime of
interest for us, the second term dominates the first one.

Indeed, let us set o’ = o and consider o> = 2Dt, A(c?) = 2DAt. Then
S(0') — S(0) =~ At/2t, while K(6, 8") ~ (At)?/4t>. Although, for finite incre-
ments Az we have

A
S(0') - S(0) ~ VK0, ) ~ 2—; , (45)

the time derivative notion S can be defined exclusively for the differential entropy,
and is meaningless in terms of the Kullback “distance”.

Let us mention that no such obstacle arises in the standard cautious use of
the relative Kullback entropy H.. Indeed, normally one of the involved densities
stands for the stationary reference one py (x) = p.(x), while another evolves in
time pg(x) = p(x,t),t € R™, thence H.(t) = —K(p,|p+), see e.g. Refs. (60, 64).

5.4. Entropy Dynamics in the Smoluchowski Process

We consider spatial Markov diffusion processes in R with a diffusion co-
efficient (constant or time-dependent) D and admit them to drive space-time
inhomogeneous probability densities p = p(x, ¢). In the previous section we have
addressed the special case of the free Brownian motion characterized by the cur-
rent velocity (field) v = v(x, t) = —u(x,t) = —DV In p(x, t) and the diffusion
current j = v - p which obeys the continuity equation 9,0 = —V, this in turn
being equivalent to the heat equation.
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It is instructive to notice that the gradient of a potential-type function Q =
O(x, 1), c.f. Eq. (22), entirely composed in terms of u:

Ap'2 1
p[;/z = Su' 4+ DV -u (46)

0 =2D?
almost trivially appears (i.e. merely as a consequence of the heat equation,?%41)
in the hydrodynamical (momentum) conservation law appropriate for the free
Brownian motion:

v+ -Viv=-VQ. 47)

A straightforward generalization refers to a diffusive dynamics of a mass
m particle in the external field of force, here taken to be conservative: F =
F(x) = —VV. The associated Smoluchowski diffusion process with a forward
drift b(x) = # is analyzed in terms of the Fokker-Planck equation for the spatial

probability density p(x, ¢)@3%:82:96).
p=DALp—V(b-p) (48)

with the initial data po(x) = p(x, 0).

Note that if things are specialized to the standard Brownian motion in an
external force field, we know a priori (due to the Einstein fluctuation-dissipation
relationship,®>) that D = k’g—r, where B is interpreted as the friction (damping)
parameter, T is the temperature of the bath, kz being the Boltzmann constant.

We assume, modulo restrictions upon drift function,®>37) to resolve the
Smoluchowski dynamics in terms of (possibly non-unique) Markovian diffusion-
type processes. Then, the following compatibility equations follow in the form of
hydrodynamical conservation laws for the diffusion process®?41):

dp+ V(vp) =0 (49)
@ +v-V=VEQ-0) (50)

where, not to confuse this notion with the previous force field potential V', we
denote by €2(x) the so-called volume potential for the process:

Q—l il ’ DV r 51
—z(m—ﬂ)+ '(m—,s)’ Gl

where the functional form of Q is given by Eq. (46). Obviously the free Brownian
law, Eq. (47), comes out as the special case.
In the above (we use a short-hand notation v = v(x, t)):

v=b—u=— DX (52)
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defines the current velocity of Brownian particles in external force field. This
formula allows us to transform the continuity equation into the Fokker-Planck
equation and back.

With a solution p(x, ¢) of the Fokker-Planck equation, we associate a differen-
tial (information) entropy S(t) = — [ p In p dx which is typically not a conserved
quantity.(?~®7 The rate of change in time of S(¢) readily follows.

Boundary restrictions upon p, vp and bp to vanish at spatial infinities (or at
finite spatial volume boundaries) yield the rate equation:

2
ﬁ=/|:,0(V-b)+D-M]dx (53)
dt 0

to be compared with the previous, b = 0 case, Eq. (47).

Anticipating further discussion, let us stress that even in case of plainly
irreversible diffusive dynamics, it is by no means obvious that the differential
entropy should grow, decay (diminish) or show up a mixed behavior. It is often
tacitly assumed that one should “typically” have S > 0 which is not true.?281)

We can rewrite Eq. (53) in a number of equivalent forms, like e.g. (note that
u?) = —D(V -u)): DS = D (V - b) + <u2> = D(V - v), but in conformity with
observations of®7:8D we consider

DS =) —(b-v)=—(v-u) (54)

as the major entropy balance equation. Here (-) denotes the mean value with
respect to p.

This balance equation is extremely persuasive, since b = F/(mp)and j = vp
combine into a characteristic “power release” expression:

do . 1 1 ) 1

dt_D/m,BF ]dx—D(b V). (55)
Like in case of not necessarily positive S, the “power release” expression Q may
be positive which represents the power removal to the environment, as well as
negative which corresponds to the power absorption from the environment.

In the formal thermodynamical lore, in the above we deal here with the time
rate at which the mechanical work per unit of mass may possibly be dissipated
(removed to the reservoir) in the form of heat, in the course of the Smoluchowski
diffusion process: kzTQ = [ F - j dx, with T being the temperature of the bath.
When there is no external forces, we have b = 0, and then the differential entropy
time rate formula for the free Brownian motion Eq. (38) reappears.

On the other hand, the positive terms in Eq. (54) and Eq. (38) represent the
rate at which information entropy is put (pumped) into the diffusing system by the
thermally active environment, thus causing a disorder/uncertainty growth. This
particular “entropy production” rate may possibly be counterbalanced (to this end
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we need external forces) by the heat removal due to dissipation, according to:

ds ds do
- (),
where Q is defined in Eq. (55) while (S);, = (1/D)(v?).

Remark: /n Refs. (57, 80, 81) a measure-theoretic and probabilistic justification
was given to an interpretation of (1/D)(v?) as the entropy production rate of
the (originally — stationary) diffusion process with the current velocity v. We
would like to point out that traditionally,"*%3) a statistical mechanical notion
of the entropy production refers to the excess entropy that is pumped out of
the system. An alternative statement tells about the entropy production by the
physical system into the thermostat. In the present discussion, an increase of the
information entropy of the Smoluchowski process definitely occurs due to the
thermal environment: the differential entropy is being generated (accumulated,
produced) in the physical system by its environment.

Of particular interest is the case of constant information entropy S = 0 which
amounts to the existence of steady states. In the simplest case, when the diffusion
current vanishes, we encounter the primitive realization of the state of equilibrium
with an invariant density p. Then, b = u = DV In p and we readily arrive at the
classic equilibrium identity for the Smoluchowski process:

—(1/kgT)VV =Vin p (57)

which determines the functional form of the invariant density in case of a given
conservative force field.®”-3?) There is an ample discussion in Ref. (57) of how
these properties match with time reversal of the stationary diffusion process and
the vanishing of the entropy production (in our lore) rate (S);,.

Coming back to the general discussion, let us define the so-called thermody-
namic force F;;, = v/ D associated with the Smoluchowski diffusion and introduce
its corresponding time-dependent potential function W(x, #):

kyT Fp=F —kzT Vinp = —VW. (58)

Notice that v = —(1/mB)V . In the absence of external forces (free Brow-
nian motion), we obviously get F;, = —ViInp = —(1/D)u.
The mean value of the potential

W ="V4+kgTlnp (59)

of the thermodynamic force associates with the diffusion process an obvious
analogue of the Helmholtz free energy:

(W) =(V)—-TSg (60)



338 Garbaczewski

where the dimensional version Sg = kS of information entropy has been intro-
duced (actually, it is a direct configuration-space analog of the Gibbs entropy).
The expectation value of the mechanical force potential (V') plays here the role of
(mean) internal energy.(7+81)

By assuming that p Vv vanishes at integration volume boundaries (or infinity),
we easily get the time rate of Helmholtz free energy at a constant temperature 7':

d . .
E(\Il)z—kBTQ—TSg. (e1)
By employing Eq. (56), we readily arrive at
d ds
S =~k — ) =- 2 2
o (W) = (ks T) (dt ) () (v?) (62)

which either identically vanishes (equilibrium) or remains negative.
Thus, Helmholtz free energy either remains constant in time or decreases as
a function of time at the rate set by the information entropy “production” S;,. One
may expect that actualy (V)(¢) drops down to a finite minimum as ¢ — oo.
However, this feature is a little bit deceiving. One should be aware that a
finite minimum as well may not exist, which is the case e.g. for the free Brownian
motion. Also, multiple minima need to be excluded as well.

5.5. Kullback Entropy versus Shannon Entropy
in the Smoluchowski Process

In the presence of external forces the property Eq. (62) may consistently
quantify an asymptotic approach towards a minimum corresponding to an invariant
(presumed to be unique) probability density of the process. Indeed, by invoking

Eq. (57) we realize that
1 V(x)
()= — — 63
Px(x) Z€XP< kBT> (63)

where Z = [ exp(—V (x)/kpT)dx, sets the minimum of (W)(¢) at (¥), = ¥, =
—k B TInZ.

Let us take the above p,(x) as a reference density with respect to which the
divergence of p(x, t) is evaluated in the course of the pertinent Smoluchowski
process. This divergence is well quantified by the conditional Kullback entropy
‘H.(t). Let us notice that

Ho(t) = — / p In <ﬁ> dx = S(t)—InZ — /EBL; (64)

Consequently, in view of Egs. (61) and (56), we get
Ho=8+Q=(S)in=0 (65)
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so that %(\IJ) = —(kzT)H,. An approach of (W)(¢) towards the minimum pro-
ceeds in the very same rate as this of H.(¢) towards its maximum.

In contrast to H, which is non-negative, we have no growth guarantee for the
differential entropy S whose sign is unspecified. Nonetheless, the balance between
the time rate of entropy production/removal and the power release into or out of
the environment, is definitely correct.

We have S > —Q and surely 0<0>8>01fQ > 0, S may take negative
values down to the lower bound —Q. For the free Brownian motion, we have
Q =0 and thus S > 0. Let us notice that in view of Eq. (60) there holds (W) =
—kgTH(t)+InZ.

5.6. One-Dimensional Ornstein-Uhlenbeck Process

It is quite illuminating to exemplify previous considerations by a detailed
presentation of the standard one-dimensional Ornstein-Uhlenbeck process. We
denote b(x) = —yx with y > 0.

If an initial density is chosen in the Gaussian form, with the mean value
ay and variance o . the Fokker-Planck evolution Eq. (48) preserves the Gaussian
form of p(x, ¢) while modifying the mean value «(¢) = oy exp(—y¢) and variance
according to

D
ok(t) = 002 exp(—2yt) + ;[l —exp(—2y1)]. (66)
Accordingly, since a unique invariant density has the form p, =
Vv 27 D exp(—yx?/2D) we obtain®¥:
2
yo
He(t) = exp(~2y i Helpo, p) = —570 exp(~2y1) (67)

while in view of our previous considerations, we have S(¢) = (1/2) In[2mea?(1)]
and F = 1/0%(t). Therefore

_ _2y(D — yog) exp(=2yt)
D — (D — yod)exp(—2yt)

(68)

We observe that ifao2 > D/y,then S < 0, while 0'02 < D/y implies S > 0.
In both cases the behavior of the differential entropy is monotonic, though its
growth or decay do critically rely on the choice of 0. Irrespective of o the
asymptotic value of S(¢) as t — oo reads (1/2) In[2we(D/y).
The differential entropy evolution is anti-correlated with this of the localiza-
tion, since
F=c rs . (69)
[D — (D — yog)exp(=2y )P

For all 0§ the asymptotic value of F reads y/D.
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We have here a direct control of the behavior of the “power release” expression
Q=H,—S. Since

H, = (yzaé/D) exp(—Zyt) > 0, (70)

in case of S < 0 we encounter a continual power supply Q > 0 by the thermal
environment.

In case of S > 0 the situation is more complicated. For example, if oy = 0, we
can easily check that Q < 0, i.e. we have the power drainage from the environment
forall t € R*. More generally, the sign of Q is negative for a(z) <2(D — yoo2)/ y.
If the latter inequality is reversed, the sign of Q is not uniquely specified and
suffers a change at a suitable time instant tchange(ag, 002).

5.7. Mean Energy and the Dynamics of Fisher Information

By considering (—p)(x, ¢) and s(x, t), such that v = Vs, as canonically con-
jugate fields, we can invoke the variational calculus. Namely, one may derive
the continuity (and thus Fokker-Planck) equation together with the Hamilton-
Jacobi type equation (whose gradient implies the hydrodynamical conservation
law Eq. (50)):

s + 35 — (@~ 0) =0, (1)

by means of the extremal (least, with fixed end-point variations) action principle
involving the (mean) Lagrangian:

2
L=— / 0 |:8ts + %(VS)Z - (”? + Q)} dx. (72)

The related Hamiltonian (which is the mean energy of the diffusion process
per unit of mass) reads

2
H = /,0 : B(vs)2 - <”7 + Q)} dx (73)

H=>1/2)(<v*>— <u?>)—(Q).

i.e.

We can evaluate an expectation value of Eq. (71) which implies an identity
‘H = — (9,s). By invoking Eq. (59), with the time-independent V', we arrive at

¥ = kBTj V(vp) (74)
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whose expectation value (), in view of vp = 0 at the integration volume bound-
aries, identically vanishes. Since v = —(1/mB)VW¥, we define

s(x,t) =(1/mB)¥(x,t) = (d;s) =0 (75)

so that H = 0 identically.
We have thus arrived at the following interplay between the mean energy and
the information entropy “production” rate:

D (ds\ 1, , ES
7 (), =20= /s (7”2) =0 "

generally valid for Smoluchowski processes with non-vanishing diffusion currents.
By recalling the notion of the Fisher information Eq. (21) and setting F =
D?F,, we can rewrite the above formula as follows:

F=@H—-2(Q)>0 (77)

where F/2 = —(Q) > 0 holds true for probability densities with finite mean and
variance.

We may evaluate directly the uncertainty dynamics of the Smoluchowski
process, by recalling that the Fisher information /2 is the localization measure,
which for probability densities with finite mean value and variance o2 is bounded
from below by 1/02, see e.g. Section 3.

Namely, by exploiting the hydrodynamical conservation laws Eq. (50) for the
Smoluchowski process we get:

8,(pv?) = =V - [(pv*)] — 2pv - V(O — Q). (78)

We assume to have secured conditions allowing to take a derivative under an
indefinite integral, and take for granted that of pv® vanishes at the integration
volume boundaries. This implies the following expression for the time derivative
of (v?):

d

E(ﬁ) =2(v-V(Q- Q). (79)
Proceeding in the same vein, in view of Q = 0, we find that
d
—(Q)=(v-VQ 80
p t( ) =(v ) (80)
and so the equation of motion for F follows:
d d_ ,
TF = 2l —2(@)] = 200 V) @81)

Since we have VO = VP/p where P = D?p Aln p, the previous equa-
tion takes the form F = — [ pvVQdx = — [ vV Pdx, which is an analog of the
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familiar expression for the power release (dE/dt = F - v, with F = —VV) in
classical mechanics; this to be compared with our previous discussion of the “heat
dissipation” term Eq. (55).

For the Ornstein-Uhlenbeck process in one dimension we have (v?)(¢) =
(D/2)H,. = t(y*a} /D) exp(—2yt), hence an asymptotic value 0, while (u?)() =
(D/2)F(t) — y/D. Accordingly, we have (2)(t) - —y/2D.

6. DIFFERENTIAL ENTROPY DYNAMICS IN QUANTUM THEORY
6.1. Balance Equations

In the discussion of Smoluchowski diffusions, our major reference point was
the conventional Fokker-Planck equation (48) for a probability density supporting
a Markovian diffusion process. The (time-independent) drift function b was as-
sumed to be known a priori (e.g. the conservative external forces were established
on phenomenological or model construction grounds), while the initial and/or
boundary data for the probability density of the process could be chosen (to a high
degree) arbitrarily.

Under such “normal” circumstances, the hydrodynamical conservation laws
(50) come out as a direct consequence of the Fokker-Planck equation. Also, the
functional expression for 2 of the form (51) is basically known to arise if one
attempts to replace an elliptic diffusion operator by a Hermitian (and possibly
self-adjoint) one.(#1:37:82)

We shall depart from the standard Brownian motion setting to more gen-
eral Markovian diffusion-type processes which, while still respecting the Fokker-
Planck equation, admit general time-dependent forward drifts. In fact, we invoke
at this point a well defined stochastic counterpart of the Schrédinger picture quan-
tum dynamics of wave packets,?-21:35.39.41.57.75) where the notion of differential
entropy and its dynamics finds a proper place. The dynamics of quantal probability
densities is here resolved in terms of diffusion-type processes.

Let us assume to have chosen an arbitrary continuous (it is useful, if bounded
from below) function V = V(% t) with dimensions of energy. we consider the
Schrodinger equation (set D = % /2m) in the form

V
[0, = —DA —. 82
10,y v+ mD 14 (82)
The Madelung decomposition v = p'/? exp(is) with the phase function s =

s(x, t) defining v = Vs is known to imply two coupled equations: the standard
continuity equation d;p = —V(vp) and the Hamilton-Jacobi-type equation

s +3(V5P (@~ 0) =0 (83)



Differential Entropy and Dynamics of Uncertainty 343

where Q2 = V/m and the functional form of O coincides with this introduced
previously in Eq. (46). Notice a “minor” sign change in Eq. (83) in comparison
with Eq. (71).

Those two equations form a coupled system, whose solutions describe a
Markovian diffusion-type process: the probability density is propagated by a
Fokker-Planck dynamics of the form Eq. (48) with the drift » = v — u where
u = DV In p is an osmotic velocity field.

We can mimic the calculus of variations steps of the previous section, so
arriving at the Hamiltonian (actually, the mean energy of the quantum motion per

unit of mass):
H = / . [l(vS)2 + (”—2 + Q)} dx (84)
=] r 3 ) )

to be compared with Eq. (73). There holds
H=(1/2)[(v*) + (u?)] + () = — (d,s) . (85)

Of particular interest (due to its relative simplicity) is the case of time-
independent V, when

H = —(ds) = E = const (86)

is known to be a conserved finite quantity, which is not necessarily positive.
Since generally H # 0, we deal here with so-called finite energy diffusion-type
processes.!:3%) The corresponding Fokker-Planck equation propagates a proba-
bility density ||> = p, whose differential entropy S may quite nontrivially evolve
in time.

Keeping intact the previous derivation procedures for (S);, (while assuming
the validity of mathematical restrictions upon the behavior of integrands), we en-
counter the information entropy balance equations in their general form disclosed
in Egs. (54)—(56). The related differential entropy “production” rate reads:

(S)in = % [5 - <%J’-+ (Q))} >0, . (87)

We recall that §7 = —(Q) > 0 which implies £ — (Q) > 1F > 0. There-
fore, the localization measure F has a definite upper bound: the pertinent wave
packet cannot be localized too sharply.

We notice that the localization (Fisher) measure

F=2(&—(Q) — (v?) (88)

in general evolves in time. Here £ is a constant and 2 = 0.
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By invoking the hydrodynamical conservation laws, we find out that the
dynamics of Fisher information follows an equation:

dF
= = 42(vV 89
=T (vVQ) (39)
and that there holds
1, dfl ,
- [5<v )+ <sz>] (90)

which is to be compared (notice the opposite sign of the right-hand expression)
with the result we have obtained for Smoluchowski processes.

Obviously, now we have F = + J vV Pdx, with the same functional form
for P as before. We interpret  as the measure of power transfer in the course of
which the (de)localization “feeds” the diffusion current and in reverse. Here, we
encounter a negative feedback between the localization and the proper energy of
motion which keeps intact an overall mean energy H = £ of the quantum motion.
See e.g. also Ref. (41).

In case of v =10, we have £ = %.7-" + () and no entropy “production”
nor dynamics of uncertainty. There holds S =0 and we deal with time-
reversible stationary diffusion processes and their invariant probability densities
,O(X).(35’57)

Let us indicate that the phase function s(x, #) shows up certain (remnant)
features of the Helmholtz W and (). This behavior is not unexpected, since e.g. the
ground state densities (and other invariant densities of stationary states) are directly
related to time-reversible stationary diffusion-type processes of Refs. (35, 57).
We have —(d,s) = €. In view of v = Vs and assumed vanishing of spv at the
integration volume boundaries, we get:

d

7= (') - €. oD

The previously mentioned case of no entropy “production” refers to v = 0 and
thuss =59 — & - 1.

We recall that the corresponding derivation of Eq. (62) has been carried out
for v = —(1/mB)V Y, with (¥) = 0). Hence, as close as possible link with the

present discussion is obtained if we re-define s into sy = —s. Then we have
d
—(sy) =€ — (v%). 92
77wl (v7) (92)

For stationary quantum states, when v = 0 identically, we get %(S\[/> =¢, in
contrast to the standard Fokker-Planck case of % (W) =0.
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Interestingly enough, we can write the generalized Hamilton-Jacobi equation,
while specified to the v = 0 regime, with respect to sy. Indeed, there holds 9,5y =
Q — Q, in close affinity with Eq. (71) in the same regime.

6.2. Differential Entropy Dynamics Exemplified
6.2.1. Free Evolution
Let us consider the probability density in one space dimension:

o X20l2
)= S - 93
P = £ AP exP( a4+4D2t2> ©3)

and the phase function

2D%x?t 2Dt
s(x, 1) = S aDiE D? arctan (—?> (94)

which determine a free wave packet solution of equations (82) and
(83), i.e. obtained for the case of V =0 with the initial data ¥ (x,0) =
(ra?)~ V4 exp(—x?/2a?).
We have:
2D(2Dt — a?)x
a* +4D32?
and the the Fokker-Planck equation with the forward drift b(x, ¢) is solved by the

above p.
In the present case, the differential entropy reads:

b(x,t) =v(x,t)+u(x,t)= (95)

S(t) = %m [27me (X?)(1)] (96)

where (X2> = fxz,odx = (a* +4D??) /202 Tts time rate DS = (v2) — (b - v)
equals:

ds 4D3%¢

- >0 97
dt  a*+4D%*2 ~ ©7)
for ¢t > 0. Its large time asymptotic is D/¢.
Furthermore, we have
: 8D*?
D(S)in = v*) (98)

- a(a* +4D22)

with the obvious large time asymptotic value 2D?/a?: the differential entropy
production remains untamed for all times.
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Due to (u?) = (2D%a?)/(a* + 4D?*t?) there holds

1 D?
&= 5(<v2> + (?)) = — (99)

Accordingly, the quantum mechanical analog of the entropy (rather than heat)
“dissipation” term — D - Q in the quantum case reads

_ 4D*t(a® —2D1)

—(b-v) = a2(at + 4D212) (100)

and while taking negative values for ¢ < o?/2D, it turns out to be positive for
larger times. Formally speaking, after a short entropy “dissipation” period we pass
to the entropy “absorption” regime which in view of its D /¢ asymptotic, for large
times is definitely dominated by D(S);, ~ 2D?/a?.

Those differential entropy balance features do parallel a continual growth of
the mean kinetic energy (1/2)(v?) from an initial value 0 towards its asymptotic
value D?/a®> = £. Note that the negative feedback is here displayed by the the
behavior of (1) which drops down from the initial value 2D?/a? towards 0. It
is also instructive to notice that in the present case F(¢) = D*/(X?)(t). We can
readily check that F = d(u?)/dt = —d (v?)/dt.

6.2.2. Steady State
We choose the probability density in the form:

o0 = (525) " exp [~ 55 (v~ 4(0)] (101)

where the classical harmonic dynamics with particle mass m and frequency w is
involved such that g (¢) = go cos(wt) + (po/mw) sin(wt) and p(t) = py cos(wt) —
mawq sin(wt).

One can easily verify that (48), and (83) hold true identically once we set
V = 1w?x? and consider:

s(x, 1) = (1/2m) [xp(¢) — (1/2)p(t)q(t) — mDowt] . (102)
A forward drift takes the form:
1

b(x, 1) = ;p(f)—w(x —q(1)) (103)

and the above p solves the corresponding Fokker-Planck equation.

The differential entropy is a constant equal S = (1/2) In(2we D /w). Although
trivially dS/dt = 0, all previous arguments can be verified.

For example, we have v = Vs = p(¢)/2m and therefore an oscillating en-
tropy “production” term D(S);, = p*(t)/4m? which is balanced by an oscillating
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“dissipative” counter-term to yield S. Suitable expressions for (s) and (9,s) easily
follow.

Concerning the Fisher measure, we have obviously F = w/D which is a
constant of motion.

6.2.3. Squeezed State

Let us consider®” the squeezed wave function of the harmonic oscillator.
We adopt the re-scaled units # = w = m = 1, hence also D = 1. The solution
of the Schrod inger equation id,v = (—1/2)AY + (x%/2)y¥ with the initial data
Y(x,0) = (y*m) Y*exp(—x?/2y?) and y € (0, ), is defined in terms of the
probability density:

B 1 x? 104
P = o T &P <_F(t)> 1

where
1
20°(t) = —5 sin’ 1 4y cos’ ¢ (105)
14

and the phase function

(1/y? = y?)sin2s
X

s(x, ) = ¢(t) + 852(1)

(1006)
where ¢(1) = £ 4+ Z + arctan(y? cot ).

Now, the differential entropy S = (1/2) In[2ec?(¢)] displays a periodic be-
havior in time, whose level of complexity depends on the particular value of the
squeezing parameter y. The previously mentioned negative feedback is here man-
ifested through (counter)oscillations of the localization, this in conformity with
the dynamics of o%(¢) and the corresponding oscillating dynamics of the Fisher
measure F = 1/02(¢). .

See e.g. also Ref. (67) for a pictorial analysis and an instructive computer
assisted discussion of the Schrodinger cat state (superposition of the harmonic
oscillator coherent states with the same amplitude but with opposite phases), with
the time evolution of the corresponding differential entropy.

6.2.4. Stationary States

In contrast to generic applications of the standard Fokker-Planck equation,
where one takes for granted that there is a unique positive stationary probability
density, the situation looks otherwise if we admit the Schrédinger equation as a
primary dynamical rule for the evolution of (inferred) probability densities. For a
chosen potential, all available stationary quantum states may serve the purpose,
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since then we have nonnegative (zeroes are now admitted) p.(x), and v(x) =0
identically (we stay in one spatial dimension).

The standard harmonic oscillator may serve as an instructive example. One
may e.g. consult Fig. 3 in Ref. (102) to check the behavior of both position
and momentum differential entropies, and their sum, depending on the energy
eigenvalue. All these stationary state values monotonically grow up with n =
1,2,...,60,19 and follow the pattern in the asymptotic regime n = 500.(67)

For convenience we shall refer to the Schrédinger eigenvalue problem with
scaled away physical units. We consider (compare e.g. Eq. (82) with D — 1/2)

Lz = ! 107
[—5 +7}@—("+§>\/P_- (107)

In terms of a suitable Hamilton-Jacobi type equation we can address the same
problem by seeking solutions of an equation

n+1/2=Q-0 (108)

with respect to /s, provided we set 2 = x%/2, define u = V In ,/p, and demand
that O = u?/2 + (1/2)V - u.

For the harmonic oscillator problem, we can refer to standard textbooks. For
each value of n we recover a corresponding unique stationary density: /0, — p,i 2
withrn = 0,1, 2,...). We have:

x2

1
where H,(x) stands for the n-th Hermite polynomial: Hy = 1, H, = 2x, H, =
2(2x2 — 1), H3 = 4x(2x* — 3), and so on.

We immediately infere.g. by = —x — O = x2/2 — 1/2, nextb; = (1/x) —
x — Q=x2/2-3/2, and by = [4x/(2x* — 1)] —x — Q =x?/2 —5/2, plus
by = [(1/x) + 4x/(2x> — 3)] = O = x? — 7/2, that is to be continued for n > 3.
Therefore Eq. (108) is here a trivial identity.

Obviously, except for the ground state which is strictly positive, all remaining
stationary states are nonnegative.

An open problem, first generally addressed in Ref. (36), see also Ref. (13),
is to implement a continuous dynamical process for which any of induced sta-
tionary densities may serve as an invariant asymptotic one. An obvious (Ornstein-
Uhlenbeck) solution is known for the ground state density.

Pl =

7. SELECTED USES OF ENTROPY FUNCTIONALS

One may raise an issue of what are the entropy functionals good for.
First, let us recall that the computer assisted research®)~(192) on the com-
plexity of atoms and nuclei (e.g. density distributions of nuclei, electrons in atoms
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and valence electrons in atomic clusters) infers densities from one- or many-body
stationary states and quantifies complexity in terms of Shannon entropies in po-
sition and momentum spaces. The list of concrete Shannon entropy values for
most common probability densities (pp. 486—7 in Ref. (27)) may not look inspir-
ing. Nevertheless, the entropy values for quantum probability densities convey a
useful information. See e.g. Refs. (26)—(38).

Quite aside from the omnipresence of entropy functionals in problems of
mathematical statistics and statistical inference,*® Shannon and Fisher func-
tionals enter important inequalities that were used in alternative proofs of
the celebrated central limit theorem.®? The mathematically oriented research
on entropy methods®~7 addresses mostly an asymptotic (large time) be-
havior for solutions of various partial differential equations, and an issue of
the speed of convergence towards equilibrium (invariant) density. The ma-
jor tools are conditional entropies and convex Sobolev inequalities, see also
Ref. (21). As a hint let us mention the validity of the Euclidean logarith-
mic Sobolev inequality for entropy functionals of the Ornstein-Uhlenbeck
process: S > 1[2 + In(2m) — F1.OV

In non-equilibrium statistical mechanics of gases one invokes entropy func-
tionals to solve concrete physical problems: for example to address the second law
of thermodynamics and the related Boltzmann H-theorem from a probabilistic
point of view. At this point, we should mention a number of papers on the rigorous
formulation of effects of noise on entropy evolution and attempts to justify the
“entropy growth” paradigm for model systems.(?4:4933:35.56.64,65)

The simplest (naive) version of the Boltzmann H-theorem in case of the
rarified gas, without external forces, close to its thermal equilibrium and space
homogeneous, tells: if the probability density function f(v) is a solution of the
Boltzmann kinetic equation, then the functional H(¢) = [ f(v)In f(v)dv does
not increase: %H(t) < 0. H(?) is a constant only if f = f.(v) =~ exp[—(v —
v0)*/ ks T].

Remembering about the Csiszar-Kullback inequality [ f In(f/g)dx >
a/2lf —g ||il , in which the Kullback-Leibler entropy appears as an upper bound
upon a “distance measure” in the set of density functions, we may consider the
behavior of solutions for heat and Fokker-Planck equations.

Let us consider 8,u = Au withx € R",t € RT and u(., t = 0) = uo(.) > 0,
[ up(x)dx = 1. As t — oo, we have u(x, t) >~ p(x, t) = (4mt)™"/? exp[—x?/4t].
The obvious question is: what is the # — oo rate of convergence of ||u — p||,1(¢) =
[ lu(x, t) = p(x, t)|dx ? Obviously one knows that a regular solution of the heat
equation behaves asymptotically as a fundamental solution, once time goes to
infinity.%?)

This decay in time has been quantified in terms of the Kullback-Leibler
entropy KC(pg|pe). If we consider p; to be a solution of the heat equation with the
initial data p, and take p,(x) = (1/+/2am) exp[—x2/2a], then we may always



350 Garbaczewski

find o and k such that p,,4; has the same second moment as p,. This implies
Kot patie) < K(po, po)lee/ (o + kt)].

If we consider 0,f=Af—V-(bf), where f(,t=0)= fy>0,
[ fo(x)dx = 1 and assume that the forward drift 5 = b(x, ) has a gradient form,
the natural question is: let f; be the stationary solution of the F-P equation, what
is the + — oo rate of convergence of || f — fill,1(¢) = f | f(x, 1) — fi(x)|dx to-
wards the value 0 ? The outcome, albeit not completely general, is that p, de-
cays in relative entropy to a Gaussian (Maxwellian), the speed of such decay is
exponential.*+6%) See also our previous discussion of the Ornstein-Uhlenbeck
process.

8. OUTLOOK

We emphasize the purpose dependence of all entropy functional definitions.

The conditional Kullback entropy is often considered as the only valid “en-
tropy growth” justification, although it was merely designed to quantify “how
distant two densities from each other are” with the large time asymptotic input
implicit.

On the other hand, in the present paper we have analyzed the “distance” of a
solution of an evolution equation at one time instant, to the very same solution at
another time instant. The Shannon (differential, information) entropy is perfectly
suited for such “shortest description length” (here, short time) analysis, and in
particular for the study of rapid changes in time of the probability distribution.

The differential entropy balance equation contains terms with a direct physical
interpretation of the power release or absorption. We have analyzed this issue
for standard diffusion processes of non-equilibrium statistical physics and next
generalized the formalism to the Schrodinger picture implemented dynamics of
probability densities related to pure quantum states in L2(R), where an approach
towards equilibrium is not expected to occur at all.

We have demonstrated that the differential entropy needs not to increase,
even in case of plainly irreversible dynamics. The monotonic growth in time of the
conditional Kullback entropy (when applicable), not necessarily should be related
to the “dynamical origins of the increasing entropy”.(6®)

In case of Smoluchowski processes, the time rate of the conditional Kullback
entropy was found to coincide with the corresponding differential (Shannon)
entropy “production” rate. The differential entropy itself needs not to grow and
may as well change its dynamical regime from growth to decay and in reverse,
even with the entropy “production” involved.

The time evolution of the differential entropy and the Fisher information
measure involves a nontrivial power transfer. In case of Smoluchowski processes
this power release can be easily attributed to the entropy removal from the system
or the entropy absorption (drainage) from the thermostat.
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In the quantum mechanical regime, the inherent power transfer is related to
metamorphoses of various forms of mean energy among themselves and needs
not the notion of external to the system thermostat. There is a definite negative
feedback between the degree of localization and the mean kinetic energy of the
probability current, Eq. (90). Effectively, the time rate of the Fisher functional  is
a measure of the power transfer in the course of which the (de)localization “feeds”
the probability current and in reverse.
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